Visual Question Answering
and Visual Reasoning

Zhe Gan
6/15/2020

=" Microsoft



Overview

e Goal of this part of the tutorial:

Use VQA and visual reasoning as example tasks to understand Vision-and-
Language representation learning

After the talk, everyone can confidently say: “yeah, | know VQA and visual
reasoning pretty well now”

Focus on high-level intuitions, not technical details

Focus on static images, instead of videos

Focus on a selective set of papers, not a comprehensive literature review



Agenda

e Task Overview
 What are the main tasks that are driving progress in VQA and visual reasoning?

e Method Overview

 What are the state-of-the-art approaches and the key model design principles
underlying these methods?

* Summary
 What are the core challenges and future directions?



Agenda

e Task Overview
 What are the main tasks that are driving progress in VQA and visual reasoning?



What is V+L about?

* V+L research is about how to train a smart Al system that can see and talk

Al Systems That Can See And Talk

Prof. Devi Parikh / Georgia Tech and Facebook Al Research

Abstract & Bio
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What is V+L about?

* V+L research is about how to train a smart Al system that can see and talk

Prof. Yann LeCun’s cake theory In our V+L context

Multimodel
Intelligence

Reinforcement
Learning

Supervised Learning BERT  Language

Understanding

ResNet Visual
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Unsupervised/Self-
supervised Learning



Task Overview: VQA and Visual Reasoning

e Large-scale annotated datasets have driven tremendous progress in this field
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made of?
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Image credit: https://visualga.org/, https://visualdialog.org/

2018/11/1

bananas

C: Adog with gogglesisina
motorcycle side car.

]
Q: Is motorcycle moving or still? k ]
A: It's parked Dialog history — @@ —> Answer
Q: What kind of dog is it? (i
A
Q

: Looks like beautiful pit bull mix

Visual Dialog

Question
model

: What color is it?

Visual Dialog

[1] VQA: Visual Question Answering, ICCV 2015
[2] Visual Dialog, CVPR 2017
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runs up to bottom of his chin



https://visualqa.org/
https://visualdialog.org/
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Who is wearing glasses? Where is the child sitting? :
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g redt Models
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L |
Is the umbrella upside down? How many children are in the bed? . ST ‘
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[1] Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering, CVPR 2017
[2] Don’t Just Assume; Look and Answer: Overcoming Priors for Visual Question Answering, CVPR 2018
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Q: Does this foundation Q: What is this? Q: What color is this? ~ Q: Please can you tell
have any sunscreen? A: 10 euros A: green me what this item is?
A: yes A: butternut squash

red pepper soup

& '“- e "l B :g:."" :
The left image contains twice the number of dogs as the right
image, and at least two dogs in total are standing.

Q: What type of Q: What type of Q: Who is this mail for?  Q: When is the

pills are these? soup is this? A: unanswerable expiration date?
A: unsuitable image A: unsuitable image A: unanswerable N LVR2

[1] VizWiz Grand Challenge: Answering Visual Questions from Blind People, CVPR 2018
[2] A Corpus for Reasoning About Natural Language Grounded in Photographs, ACL 2019
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Why is [person4gl] pointing at
[person1§}]?

a) He is telling |[
the pancakes.

b) He just told a joke. . ==
¢) He is feeling accusatory towards [person1f§}]. \\ (C:
d) He is giving [person1f] directions. N |=

Rationale: | think so because... Visual COMMONSENSE REASONING

] that [person1@}] ordered

a) [person1§g]] has the pancakes in front of him

b) [person4a] is taking everyone's order and asked for

[ hide all ][ show all “ [personi] H [person2] ]

c) [personsgl is looking at the pancakes both she and

clarification

[person2f‘\] are smiling slightly

d) [person3%M] is delivering food to the table, and she . L . .
= [1] From Recognition to Cognition: Visual Commonsense Reasoning, CVPR 2019

might not know whose order is whose
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Prediction
P What is in the basket? banana
. ;:lgk:/;égan ahe hOlding * Entailment a j@f‘y‘("' ey -\V»‘ What is contained in the basket? pizza
e The sisters are hugging e Neutral What can be seen inside the basket? remote
goodbye while holding to _
go packages after just = What does the basket mainly contain? paper
eating lunch.
e The men are 'ﬁghting e (Contradiction
outside:a: deif. Is it safe to turn left? Yes
Can one safely turn left? No
Premise HypOthESiS Answer Would it be safe to turn left? No
V|S ua I E nta | I me nt Would turning left considered safe in this picture? Yes

VQA-Rephrasings

[1] Visual Entailment: A Novel Task for Fine-Grained Image Understanding, 2019
[2] Cycle-Consistency for Robust Visual Question Answering, CVPR 2019



THE UNIVERSITY OF

Geqth, TEXAS W  facebook facebook  UNB

AT AUSTIN

VQAV0.1  VQAV2.0 VizWiz VCR VQA-Rephrasings  TextVQA ST-VQA

2015/6 201714 2018/2 2018/11/27 2019/2/15 2019/4 2019/10

2016/11 2017/12

2018/11/1 2019/1 2019/2/25 2019/5 e

Visual Dialog ~ VQA-CP NLVR2 VE GQA -\| OK-VQA

| | ST, 2 f d
- | - | ¥ £y
Georgia Georgia | Faap NEC S Stanford | AIZZ
Tech | Tech ' A (&8)) University |
= = —_————
Cornell University
Pattern: What|Which <type> [do you think] <is> <dobject>, <attr> or <decoy>?
Program: Select: <dobject> — Choose <type>: <attr>|<decoy> yellow
Reference: The food on the red object left of the small girl that is holding a hamburger fries 4
Decoy: brown ‘ e \
on ~
What color is the food on the red object left of the small girl that ‘
h r
is holding a hamburger, yellow or brown? W
small
Select: hamburger — Relate: girl,holding — Filter size: small — Relate: object, holding
left — Filter color: red — Relate: food,on — Choose color: yellow | brown
Graph Normalization M _ Sampling and Balancing Entailments Relations New Metrics

* Ontology construction ® Patterns Collection ® Distribution Balancing ® Functional Programs ® Consistency

* Edge Pruning * Compositional References * Type-Based Sampling ® Entailment Relations * Validity & Plausibility
* Object Augmentation * Decoys Selection ¢ Deduplication ® Recursive Reachability * Distribution

* Global Properties ® Probabilistic Generation * Grounding

[1] GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering, CVPR 2019



Gegrata TEXAS AT  facebook facebook|  UMB

AT AUSTIN I

VQAV0.1  VQAV2.0 VizWiz VCR VQA- Rephrasmgs‘ TextVQA I ST-VQA

2015/6 2017/4 2018/2 2018/11/27

2019/2/15 2019/4 2019/10

2016/11 2017/12 2018/11/1 2019/1 2019/2/25 2019/5

Visual Dialog VQA-CP NLVR2 VE GQA OK-VQA

Georgial Georgia | el [d Stanford r
Te%h W Te%h \ NEC g9 University Alz

TextVQA

A dataset to benchmark visual reasoning based on text in images.

~ What is the largest
denomination on table?

What is the top 0z?

Ground Truth Prediction Ground Truth Prediction

16 red 500 unknown

[1] Towards VQA Models That Can Read, CVPR 2019
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Q: Which American
president is associated
with the stuffed animal

seen here?

A: Teddy Roosevelt

Outside Knowledge

Another lasting, popular legacy of Roosevelt is the stuffed toy bears—teddy bears— Q: What is the price of the ba- Q: What does the red Sign
named after him following an incident on a hunting trip in Mississippi in 1902. nanas per kgf? Say?

Developed apparently simultaneously by toymakers ... and named after President A: $1 1 98 A: StOp

Scene Text VQA

Theodore "Teddy" Roosevelt, the teddy bear became an iconic children's toy,
celebrated in story, song, and film.

At the same time in the USA, Morris Michtom created the first teddy bear, after
being inspired by a drawing of Theodore "Teddy" Roosevelt with a bear cub. O K-VQA

[1] OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge, CVPR 2019
[2] Scene Text Visual Question Answering, ICCV 2019



More datasets...

f% SQuINTing at VQA Models:
Interrogating VQA Models with Sub-Questions

Is the banana ripe
enough to eat?

VQA System

VQA System

Are the bananas mostly
green or yellow?

Figure 1: A potential reasoning failure: Current models answer “Yes” cor-
rectly to the Reasoning question “Is the banana ripe enough to eat?”. We
might assume that correctly answering the Reasoning question stems from
perceiving relevant concepts correctly — perceiving yellow bananas in this
example. But when asked “Are the bananas mostly green or yellow?”, it
answers “Green” incorrectly — indicating that the model possibly answered
the original for the wrong reasons even if the answer was right. We quan-
tify the extent to which this phenomenon occurs in VQA and introduce a
new dataset aimed at stimulating research on well grounded reasoning.

VQA-LOL: Visual Question Answering under the Lens of Logic

Annotations from COCO

OBJECTS (B):
person, bottle, bowl, microwave,
fiidge, clock

CAPTIONS (C):
“4 man bending over to look
inside of a fridge.”

“d person standing in front of an
opened refrigerator?”

Question Pred. Answer
R YES(96.26 %) )
Is there beer? NO(3.74 %)
Qz:

Is the man wearing
\ shoes?

NO (90.03 %)
YES (9.97 %) )

—IQZ 5
Is the man not wearing
shoes?
202/ Q4

Is the man nor wearing

Qhoes and 1is there beer?

\

NO (80.23 %)
YES (19.77 %)

NO (62.00 %)
YES (37.99 %))

QNC:
Is there beer and does
this seem like a man
bending over to look
inside of a fridge?

_lQZ ViB
Is the man not wearing
shoes or is there a clock?

Q1 N antonym(B) :
Is there beer and is there

a wine glass?

NO (100%)\

YES (0.00 %)

NO (100 %)
YES (0.00 %)

YES (84.37 %)

NO (15.60 %)

LXMERT

2 accuracy

Original questio

Question Composition

Composition using COCO annotations

86.65

50.79

50.51



Diagnostic Datasets

e CLEVR (Compositional Language and
Elementary Visual Reasoning)

* Has been extended to visual dialog
(CLEVR-Dialog), referring expressions
(CLEVR-Ref+), and video reasoning
(CLEVRER)

[1] CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning, CVPR 2017
[2] CLEVR-Dialog: A Diagnostic Dataset for Multi-Round Reasoning in Visual Dialog, NAACL 2019

[3] CLEVR-Ref+: Diagnosing Visual Reasoning with Referring Expressions, CVPR 2019

[4] CLEVRER: Collision Events for Video REpresentation and Reasoning, ICLR 2020

Questions in CLEVR test various aspects of visual reasoning
including attribute identification, counting, comparison, spatial
relationships, and logical operations.

Q: Are there an equal number of large things and metal spheres?

Q: What size is the cylinder that is left of the brown metal thing that is left of the
big sphere?

Q: There is a sphere with the same size as the metal cube; is it made of the same
material as the small red sphere?

Q: How many objects are either small cylinders or red things?



Beyond VQA: Visual Grounding

» Referring Expression Comprehension: RefCOCO(+/g)
» Referlt Game: Referring to Objects in Photographs of Natural Scenes

* Flickr30k Entities

RefCOCO+

I.v — W N > -.\
_’_éﬂ AR i
23 w&;’.a ‘%@*B fq s;@ Nl &, *’

right rocks woman on right in white shirt | guy in yellow dirbbling ball

rocks along the right side woman on right yellow shirt and black shorts

stone rlght side of stairs rlght woman yeIIow shirt in focus A man with pierced ears is wearing glasses and an orange hat.
A man with glasses is wearing a beer can crotched hat.

A man with gauges and glasses is wearing a Blitz hat.
A man in an orange hat starring at something.
A man wears an orange hat and glasses.

[1] OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge, EMNLP 2014
[2] Flickr30K Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models, IJCV 2017



Beyond VQA: Visual Grounding

* PhraseCut: Language-based image segmentation

short deer walking people wipers on trains zebra lying on savanna black shirt

[1] PhraseCut: Language-based Image Segmentation in the Wild, CVPR 2020



Visual Question Answering

+76.36

Challenge 2019

Winner
75
. Revisiting Grid Features for VQA
2020 VQA Challenge Winner
Challenge 2017 .
Winner O
65 ‘ 3 ’ &
Duy-Kien Nguyen  Huaizu Jiang  Vedanuj Goswami Licheng Yt Xinlei Chen
Challenge 2016 Rank s Participant team = yes/no s+ number ¢ other ¢« overall
- Winner
1 Renaissance (StructVBERT-base Ensemble)  90.71 59.80 66.92 76.01
2 (BGN, ensemble) 90.89 61.13 66.28 75.92
3 MS D365 Al (VILLA Ensemble) 91.30 59.23 66.20 75.85
5 Mccv 2015

01/01/16  05/01/16  09/01/16  01/01/17 05/01/17  09/01/17 01/01/18 05/01/18 09/01/18 01/01/19 05/01/19
Image Credit: CVPR 2019 Visual Question Answering and Dialog Workshop



Agenda

e Method Overview

 What are the state-of-the-art approaches and the key model design principles
underlying these methods?



Overview

* How a typical system looks like

Image ]

Feature J

\ 4

Multi-Modal Answer
Hamburger

Extraction

Fusion Prediction

What is she eating? Quest|.on ]
Encoding J
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Overview

* Better image feature preparation

* Enhanced multimodal fusion
* Bilinear pooling: how to fuse two vectors into one
* Multimodal alignment: cross-modal attention
* Incorporation of object relations: intra-modal self-attention, graph attention

* Multi-step reasoning

* Neural module networks for compositional reasoning
* Robust VQA (briefly mention)
e Multimodal pre-training (briefly mention)



Better Image Feature Preparation

* From grid features to region features, and to grid features again
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r D feature vectors of different
14x14 Feature Map

parts of image

CNN

: bod
of Y Question: Query _\3F_ &
water What are sitting | |
L.Input 2. Convolutional 3. RNN with attention 4. Word by in the basket on \ |
Image Feature Extraction over the image word a bicycle? | |

@ Answer:
3‘ — dogs
L generation Attention Ia_y;r_‘l_ _:ﬁ_:tt_e;tl_o; layer 2
Show, Attend and Tell Stacked Attention Network

512

Question 5 [Word embedding}14X300 {GRU],l>

Top-down attention weights \ Slimenps (oS o] ok o E o otk
1O e O-®@-0—> L
f’ -._.-\ 2048 f Predicted scores of Figure 1. Typically, attention models operate on CNN features cor-

kx2048 . . . ! ! ]
Image features > O—W candidate answers responding to a uniform grid of equally-sized image regions (left).
Concatenation Weighted sum over  Element-wise Our approach enables attention to be calculated at the level of ob-
image locations product jects and other salient image regions (right).

2017 VQA Challenge Winner

[1] Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015
[2] Stacked Attention Networks for Image Question Answering, CVPR 2016
[3] Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering, CVPR 2018
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region

selection
VQA2 vga-eval set

grid region
features features VQA 64.4 - +

N

image ™

Bottom-Up
(region)

Pipeline

grid 64.2
features VQA

image ™

Ours
(grid)

64.0 1

Accuracy

63.8 1

N 0.89s

Bottom-Up
(66.13)

[T —— region features
63.6 1
+ grid features

100 200 300 400 500 600
Maximum Number of Regions/Grids as Input for VQA

0.02s

Running Time

Ours
(66.27)

In Defense of Grid Features for VQA

[1] In Defense of Grid Features for Visual Question Answering, CVPR 2020
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Pixel-BERT :

—————————————————————————————————————————— | pmmmmmmmmmm :Pre';;l:;(i:i"g Model test-dev|test-std
,r Sentence Encoder | | Cross-Modality : !
: Embedding [CLS] I : Alignment : : MUTAN[5] 60.17 -
woman a blac m - The I |
| ot e } ] e BUTD[2] 65.32 | 65.67
i cis] e[ . | o P} [Token |- bl [ e ViLBERT][21] 70.55 | 70.92
; =H § vsing a0 VisualBERT[19] | 70.80 | 71.00
sl I N VLBERT[29] | 71.79 | 72.22
(gmmmy |  CNN-based VisualEncoder VS LXMERT[33] | 72.42 | 72.54
i ( Pixel Feature Embedding : i R E-E? : E M;fj:&;;’i“;)gc UNITER[6] 72.27 72.46
i Y |0 Pixel-BERT (r50) | 71.35 | 71.42
[aw gl g _JIFEL.D N ¥ _ Pixel-BERT (x152)| 74.45 | 74.55
: ne < 3 'Eg />\_|/ : : : i @ Elem-emwme Sum
i Semantic ii i: E\]/] S;:::l:: :: Table 2. Evaluation of Pixel-BERT
I L Embeddin ) ! ! with other methods on VQA.

L g g g g g ) .

[1] Pixel-BERT: Aligning Image Pixels with Text by Deep Multi-Modal Transformers, 2020



Bilinear Pooling

* Instead of simple concatenation and element-wise product for fusion, bilinear
pooling methods have been studied

* Bilinear pooling and attention mechanism can be enhanced with each other
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ount Sketch

Convolution

Multimodal Low-rank Bilinear Pooling

Multimodal g—, *§
Compact % =
Bilinear @ - ﬁz r € R™ y e R?
What are all 1—%—. : —
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Multimodal Compact Bilinear Pooling :
2016 VQA Challenge Winner Sum Pool

(Y Y Eas

However, the feature after FFT is very
(a) Multi-modal Factorized Bilinear Pooling (b) MFB module

high dimensional.

[1] Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding, EMNLP 2016

[2] Hadamard Product for Low-rank Bilinear Pooling, ICLR 2017
[3] Multi-modal Factorized Bilinear Pooling with Co-Attention Learning for Visual Question Answering, ICCV 2017
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What is sitting on the desk
in front Of the boys? : ........................................ , .. .:

Tucker

" - ‘ . '
eco":ﬁ?‘s' ion ¥ : . —D Laptops
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[1] MUTAN: Multimodal Tucker Fusion for Visual Question Answering, ICCV 2017
[2] BLOCK: Bilinear Superdiagonal Fusion for Visual Question Answering and Visual Relationship Detection, AAAI 2019 skis



FILM: Feature-wise Linear Modulation
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[1] FiLM: Visual Reasoning with a General Conditioning Layer, AAAI, 2018



Multimodal Alignment

* Cross-modal attention:
* Tons of work in this area
* Early work: questions attend to image grids/regions
* Current focus: image-text co-attention
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Parallel Co-attention and Alternative Co-attention

Original Image First Attention Layer Second Attention Layer

(b) Visualization of the learned multiple attention layers. [1] Stacked Attention Networks for Image Question Answering, CVPR 2016
[2] Hierarchical Question-Image Co-Attention for Visual Question Answering, NeurlPS 2016
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[1] Stacked Attention Networks for Image Question Answering, CVPR 2016
[2] Improved Fusion of Visual and Language Representations by Dense Symmetric Co-Attention for Visual Question Answering, CVPR 2018



Relational Reasoning

* Intra-modal attention
* Recently becoming popular
* Representing image as a graph
e Graph Convolutional Network & Graph Attention Network
 Self-attention used in Transformer
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Graph-Structured Representations for Visual Question Answering

[1] Graph-Structured Representations for Visual Question Answering, CVPR 2017
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Non-relational question: Object pair

object with question ~ J6-MLP

Original Image:

What is the size of
the brown sphere?

Relational question:

Are there any rubber
things that have the
same size as the yellow
metallic cylinder?

Element-wise
sum

What size is the cylinder
that is left of the brown

metal thing that is left
of the big sphere?

| p what size is... sphere

RN(O) — fqb ZQG(Oi;Oj) LSTM

,J

Relational Network: A fully-connected graph is constructed

[1] A simple neural network module for relational reasoning, NeurIPS 2017
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[1] Learning Conditioned Graph Structures for Interpretable Visual Question Answering, NeurlPS 2018
[2] MUREL: Multimodal Relational Reasoning for Visual Question Answering, CVPR 2019
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[1] Language-Conditioned Graph Networks for Relational Reasoning, ICCV 2019
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Image Encoder Relation Encoder
|
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I | —
| ! | = [—=¥
| R3 Q: Is this the typical fashion for riding Q: What is he holding?
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A: Pole A: No

(b) Spatial Relation
Explicit Relation: Semantic & Spatial relation

Implicit Relation: Learned dynamically during training

Q: Where is the vase? Q: Should the people be walking
A: On the table according to the light?
A:No

[1] Relation-Aware Graph Attention Network for Visual Question Answering, ICCV 2019 (¢) Implicit Relation
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MCAN: Deep Modular Co-Attention Network

* Winning entry to VQA Challenge 2019
e Similar idea also explored in DFAF, close to V+L pre-training models
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[1] Deep Modular Co-Attention Networks for Visual Question Answering, CVPR 2019
[2] Dynamic Fusion with Intra- and Inter- Modality Attention Flow for Visual Question Answering, CVPR 2019
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MCAN: Deep Modular Co-Attention Network

* Winning entry to VQA Challenge 2019
e Similar idea also explored in DFAF, close to V+L pre-training models

Q: What is the
mustache Stacking
made of?
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Reduce

l

Encoder- —

Decoder ===a8 Reduce A: Banana
Question and Image Deep Co-Attention Multimodal Fusion and Output
Representation (§4.1) Learning (§4.2) Classifier (§4.3)

[1] Deep Modular Co-Attention Networks for Visual Question Answering, CVPR 2019
[2] Dynamic Fusion with Intra- and Inter- Modality Attention Flow for Visual Question Answering, CVPR 2019



§ Stanford

MAC: Memory, Attention and Composition

* Multi-step reasoning via recurrent MAC cells, while retaining end-to-end
differentiability

f/—’""___"""'i ,—-"'"_'_"\""1‘ (2) MAC Recurrent Network (p cells)

control

Memory —» Memory ~—» Memory —» Memory b memory
P Intermediate result
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- 1 W2 - (W] words l
what is the mu’h.-rraf of the large ab;ect Answer
mexd that is both behind the big yellow obje “metal”

and in front of the blue ry}mdeﬂ”‘

[1] Compositional Attention Networks for Machine Reasoning, ICLR, 2018



A Stanford

University

MAC: Memory, Attention and Composition

 Each cell maintains recurrent dual states:

* Control c: the reasoning operation that ;Vo’]g:
should be accomplished at this step. is
* Memory m: the retrieved information ma‘?é __
relevant to the query, accumulated over ‘“"}g ,
previous iterations. the
. . right
* Implementation-wise: of
* Attention-based average of a given query sphg:z -
(question) in [ |
 Attention-based average of a given front | 1
Knowledge Base (image) th‘;f |

tiny
blue
block

[1] Compositional Attention Networks for Machine Reasoning, ICLR, 2018
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Neural State Machine

* We see and reason with concepts, not visual details, 99% of the time
* We build semantic world models to represent our environment

alphabet (concepts)

The State Machine
table A
2 on top 5 Al
ansitions . c

yellow

olor: brown (0.92)  =wmm
ra es’
banana & M Material: wood (0.8) wmm
Inside right
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e red S 4 . Color: red (0.95) —
i irl |
\- w : \ Shape: round (0.87) = .
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What is the red fruit inside the bowl! ; ;":lf‘:: right m inside  red e Posture: sitting (0.82) wem
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\ instructions properties disentangled
representation

[1] Learning by Abstraction: The Neural State Machine, NeurIPS 2019



Neural Module Network

 All the previously mentioned work can be considered as Monolithic Network

* Design Neural Modules for compositional visual reasoning
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[2] Learning to Reason: End-to-End Module Networks for Visual Question Answering, ICCV 2017
[3] Inferring and Executing Programs for Visual Reasoning, ICCV 2017

[4] Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning, CVPR 2018
[5] Explainable Neural Computation via Stack Neural Module Networks, ECCV 2018
[6] Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding, NeurIPS 2018

[7] Probabilistic Neural-symbolic Models for Interpretable Visual Question Answering, ICML 2019
[8] Meta Module Network for Compositional Visual Reasoning, 2019
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Compositional Visual Reasoning

Q: How many spheres
are the left of the big
sphere and the same
color as the small
rubber cylinder?

[1] CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning, CVPR, 2017

Identify big sphere

l

Spheres on left

l

Rubber cylinder

v

Sphere of same color

Count
A:1l



Consider a compositional model

Q: How many Spheres are the compare material

left of the big sphere and the /' \

same colqr as Te small Common operations Seiery TG

rubber Cyllnder. Attributes identification material material
Counting objects I ]

Q: How many spheres are the Comparisons -

. . ) : ; . filter relate
right of the big sphere and the / Spatial relationships shape=sphere right
same color as the small / |Logical operations I I
rubber cylinder? /

filter filter
size=big shape=cube
Q: Is the big sphere the same
material as the thing on the ,/’ Network architecture
right of the cube? ' corresponding to the

third question

[1] Deep Compositional Question Answering with Neural Module Networks, CVPR, 2016



Overview of the NMN approach
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[1] Deep Compositional Question Answering with Neural Module Networks, CVPR, 2016




Question Answer: Yes
1
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[1] Deep Compositional Question Answering with Neural Module Networks, CVPR, 2016



Inferring and Executing Programs

Question
Are LSTM | = LSTM = BrEATEr
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[1] Inferring and Executing Programs for Visual Reasoning, ICCV, 2017
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What do the modules learn?

Q: What shape is the. .. ... purple thing? ...blue thing? ...red thing right of ...red thing left of
the blue thing? the blue thing?
A: cube A: sphere A: sphere A: cube

Q: How many cvan ...right of the gray cube? ...left of the small cube? ...right of the gray cube ...right of the gray cube

things are. .. and left of the small cube? or left of the small cube?
A:3 A:2 A:l A: 4

[1] Inferring and Executing Programs for Visual Reasoning, ICCV, 2017
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[1] Learning to Reason End-to-End Module Networks for Visual Question Answering, ICCV, 2017



— — — — — — —

i o - N - s .
Bonion! IMiT Berkeley IVIT e (82 microsoft
Th

Berkeley Berkeley

UNIVERSITY OF CALIFORNIA UNIVERSITY OF CALIFORNIA

NMN N2NMN PG+EE

UNIVERSITY OF CALIFORNIA

D StackNMN  NS-VQA  Prob-NMN |  MMN |

2015/11 2017/4 2017/5 2018/3

2018/7 2018/10

2019/2 2019/10

/" Monolithic NN ) Answer: Man
59 (] ol o e
1 - -
E E & _ Supervision
! O @0 A% e e ) e UL e :
\_  Image/Question Image/Program | x, 5 “ o Relate v Jo--!
b 4 | O

Teacher-Student

P Module
' Supervision

19p0odu3 |ensIA

[ Jowa1ea102l90 |
|

= . = = L =
Ie=a e Gemem) | o] | (o) (@)
S ?__--___' [ ¥ T }.______-_' [ }___-___' O ¥-_____.'
Instantiate PR | . Instantiate
- - (e
| | § | |
e e S Select(ball) }——{ Relate([1], beside, boy) }—{ Relate_inv([1], holding, girl) }—{ Filter(2], tall) }——{ Choose([3],[4], older) ] @
:“-I\-/l-e-t-a-l-\'l-lét-:l-u-lt-e"-\: Program Generator Ij < Question: Who is older, the girl holding the ball or the tall boy beside the ball?

KMMN Q: What is the person in pink holding? Y,

[1] Meta Module Network for Compositional Visual Reasoning, 2019



Robust VQA: two examples

* Overcoming language prior with adversarial regularization
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[1] Overcoming Language Priors in Visual Question Answering with Adversarial Regularization, NeurlPS 2018



Robust VQA: two examples

 Self-critical reasoning

Question: What is the man eating? Baseline Prediction: Hot Dog (wrong)
Training Answer
Distribution Test Answer
Distribution (’: X _r )
= 1 What utensil is pictured? millls
— Explaining prediction “knife”
Knife X
” v 07 [T V,p(knife|Q,V)
N Answer
iy —>
Prediction

Fork
(0.66)

X . Original image
Human Visual Pizza Hot Donut Sand Hot dog Banana Cake Banana No burritc

Attention Dog wich (baseline) (baseline) e
(a) (b) (c) (d) (e)

7

J
~N

There 1s a fork
near the cake.

«— | Vup(fork|Q,V)

Our Prediction: Banana (correct)

Human textual explanation SR ERERSCROG s i Self Critical
OR Influence i| Loss
See the right image Etrengthen '
0SS

region, but still
predicts wrong

Extracting the most influential object

Human visual explanation Proposal object set The most influential object
p posal obj PN ’ P,
»  Hot dog < Banana
(self-critical) (self-critical)
(® (]

[1 Self-Critical Reasoning for Robust Visual Question Answering, NeurlPS 2019



Agenda

* Summary
 What are the core challenges and future directions?



Take-away Messages

e Popular tasks:
* VQA, GQA, VCR, RefCOCO, NLVR?2, etc.

* Methods:

e Grid vs. region features

* Bilinear pooling and FiLM

Multimodal alignment with cross-modal attention

Relational reasoning with intra-modal attention (self-attention, graph attention)
* Transformer model becomes popular in the field

Multi-step reasoning

Neural state machine

Neural module network



Challenges & Future Directions

* Can we have something like GLUE and SuperGLUE?

e Can we use a Visual Transformer to encode images to train a large V+L
Transformer model end-to-end?

* Instead of Transformer, can we perform FiLM-like fusion for multi-modal
pre-training?

* Since all the reasoning is performed in the embedding/neural space, it is
not clear whether the model “truly” learns how to reason

e Adversarial robustness of V+L models is less explored in the current
literature



Thank you!
Any Questions?



